1.	. Sonic velocity of sound in air can be described as			
		a) $\sqrt{\frac{K}{\rho}}$	b) $\sqrt{dp/d ho}$	
		c) $\sqrt{\gamma p/\rho}$	d) all of the above	
An	s. (d)		
2. Mach number is ratio of				
		a) v to v _{max}	b) v _{max} to v	
		c) both	d) None	
wh	iere,	v, the speed of f	fluid in conduit, to v_{max} , the speed of sound in fluid at actual flow condition.	
An	s. (a))		
3.	Th	he flow is sonic at Mach number,		
		a)<1	b) >1	
		c) = 1	d) 0	
Ans. (c)				
	4.	Which of the following statement is true:		
		a) gas (diatomic) flowing through a nozzle, the maximum velocity is always less than sonic velocity.		
		b) gas (diatomic) flowing through a nozzle, the maximum velocity is always sonic velocity.		
		c) gas (diatomic) flowing through a nozzle, the minimum velocity is always sonic velocity.		
		d) gas (diatomic) flowing through a nozzle, the maximum velocity is always more than sonic		
velocity.				
		Ans. (b)		
	5.	 p₀/p will always be at critical level until a) p_a/p increases b) p_a/p remains constant c) p_a/p decreases d) None 		
		Ans. (a)		

- 6. In variable flow, p_0/p will be maintained at critical value, only if p_0/p is,
- a) < 1.894 atm
- b) = 1.894 atm
- c) > 1.894 atm
- d) All of the above

Ans. (c)

- 7. Air flows through a nozzle of diameter .93 mm having a discharge coefficient of 0.95, from a pressure of 1.01×10^6 Pa to a pressure of 1 atm at 28 °C. Find the desity of air in kg/m³
 - a) 1.174
 - b) 1.16
 - c) 0.116
 - d) 11.74

Ans. (d)

$$\rho = \frac{pM}{RT}$$

= $(1.01 \times 10^6 * 29)/(8314*(28+273) = 11.74 \text{ kg/m}^3$

- 8. Variable flow is a flow which occurs
- a) when downstream pressure varies
- b) when upstream pressure varies
- c) when both upstream and downstream pressures vary
- d) when upstream pressure remains constant

Ans. (b)

- 9. A reservoir of oxygen is maintained at 1.184 atm pressure and 25 °C temperature. A 10 mm nozzle, fitted to this reservoir releases oxygen to a pressure of 650 mm of Hg. If molecular weight of oxygen is 32, what is the rate of release of oxygen?
- a) 67.17 kg/h
- b) 67.17 kg/s
- c) 1.11 kg/h
- d) 11.17 kg/s

Ans. (a)

$$W_{650} = C_D A_0 \sqrt{\frac{2\gamma p \rho}{(\gamma - 1)} \left[\left(\frac{p_0}{P}\right)^{\frac{2}{\gamma}} - \left(\frac{p_0}{p}\right)^{\frac{\gamma + 1}{\gamma}} \right]}$$

Assume $C_D = 0.98$

 P_0 = 650 mm Hg = 86,659.539 Pa and P = 1.18 atm = 19, 563.9 Pa, γ =1.4

So $W_{650} = 0.0186594 \text{ kg/s} = 67.17 \text{ kg/h}$ (a)

- 10. Pressure ratio in air flow through nozzle is at critical condition if
- a) upstream pressure is equal to downstream pressure
- b) upstream pressure is 5 times greater than downstream pressure
- c) downstream pressure is 5 times greater than upstream pressure
- d) None of the above

Ans. (b)