1. Sonic velocity of sound in air can be described as
a) $\sqrt{\frac{K}{\rho}}$
b) $\sqrt{d p / d \rho}$
c) $\sqrt{\gamma p / \rho}$
d) all of the above

Ans. (d)
2. Mach number is ratio of
a) $v$ to $v_{\text {max }}$
b) $v_{\text {max }}$ to $v$
c) both
d) None
where, $v$, the speed of fluid in conduit, to $v_{\text {max }}$, the speed of sound in fluid at actual flow condition.

Ans. (a)
3. The flow is sonic at Mach number,
a) $<1$
b) $>1$
c) $=1$
d) 0

Ans. (c)
4. Which of the following statement is true:
a) gas (diatomic) flowing through a nozzle, the maximum velocity is always less than sonic velocity.
b) gas (diatomic) flowing through a nozzle, the maximum velocity is always sonic velocity.
c) gas (diatomic) flowing through a nozzle, the minimum velocity is always sonic velocity.
d) gas (diatomic) flowing through a nozzle, the maximum velocity is always more than sonic velocity.

Ans. (b)
5. $p_{0} / p$ will always be at critical level until
a) $p_{a} / p$ increases
b) $p_{a} / p$ remains constant
c) $p_{a} / p$ decreases
d) None

Ans. (a)
6. In variable flow, $p_{0} / p$ will be maintained at critical value, only if $p_{0} / p$ is,
a) $<1.894 \mathrm{~atm}$
b) $=1.894 \mathrm{~atm}$
c) $>1.894 \mathrm{~atm}$
d) All of the above

Ans. (c)
7. Air flows through a nozzle of diameter .93 mm having a discharge coefficient of 0.95 , from a pressure of $1.01 \times 10^{6} \mathrm{~Pa}$ to a pressure of 1 atm at $28^{\circ} \mathrm{C}$. Find the desity of air in $\mathrm{kg} / \mathrm{m}^{3}$
a) 1.174
b) 1.16
c) 0.116
d) 11.74

Ans. (d)

$$
\begin{aligned}
& \rho=\frac{p M}{R T} \\
& =\left(1.01 \times 10^{6 *} 29\right) /\left(8314^{*}(28+273)=11.74 \mathrm{~kg} / \mathrm{m}^{3}\right.
\end{aligned}
$$

8. Variable flow is a flow which occurs
a) when downstream pressure varies
b) when upstream pressure varies
c) when both upstream and downstream pressures vary
d) when upstream pressure remains constant

Ans. (b)
9. A reservoir of oxygen is maintained at 1.184 atm pressure and $25^{\circ} \mathrm{C}$ temperature. A 10 mm nozzle, fitted to this reservoir releases oxygen to a pressure of 650 mm of Hg . If molecular weight of oxygen is 32 , what is the rate of release of oxygen?
a) $67.17 \mathrm{~kg} / \mathrm{h}$
b) $67.17 \mathrm{~kg} / \mathrm{s}$
c) $1.11 \mathrm{~kg} / \mathrm{h}$
d) $11.17 \mathrm{~kg} / \mathrm{s}$

Ans. (a)

$$
W_{650}=C_{D} A_{0} \sqrt{\frac{2 \gamma p \rho}{(\gamma-1)}\left[\left(\frac{p_{0}}{P}\right)^{\frac{2}{\gamma}}-\left(\frac{p_{0}}{p}\right)^{\frac{\gamma+1}{\gamma}}\right]}
$$

Assume $C_{D}=0.98$
$P_{0}=650 \mathrm{~mm} \mathrm{Hg}=86,659.539 \mathrm{~Pa}$ and $\mathrm{P}=1.18 \mathrm{~atm}=19,563.9 \mathrm{~Pa}, \gamma=1.4$
So $\mathrm{W}_{650}=0.0186594 \mathrm{~kg} / \mathrm{s}=67.17 \mathrm{~kg} / \mathrm{h}(\mathrm{a})$
10. Pressure ratio in air flow through nozzle is at critical condition if
a) upstream pressure is equal to downstream pressure
b) upstream pressure is 5 times greater than downstream pressure
c) downstream pressure is 5 times greater than upstream pressure
d) None of the above

Ans. (b)

